FSS-314 Series

0.8A, Gate Driver Photo Coupler

FOXCONN

Data Sheet

Description

The FSS-314 series is a photocoupler in a 6-pin stretched SO-6 package that contains an LED optically coupled to an integrated circuit with a power output stage. This photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system.

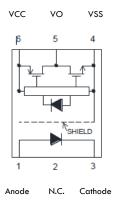
The photocoupler operational parameters are guaranteed over the temperature range from -40°C ~ +110°C.

Applications

- · Isolated IGBT/Power MOSFET gate drive
- Industrial Inverter
- · AC brushless and DC motor drives
- Induction Heating

Features

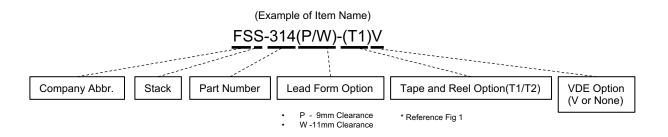
- V_{ISO}: 5000 (Vrms)
- 0.8 A maximum peak output current
- Rail-to-rail output voltage
- · 110 ns maximum propagation delay
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- Wide operating range: 10 to 30 Volts (VCC)
- Guaranteed performance over temperature -40°C ~ +110°C.
- Safety agency certification
 - ✓ UL 1577 approved
 - ✓ VDE approved DIN_EN/IEC60747-5-2
 - ✓ CQC GB4943.1, GB8898



1

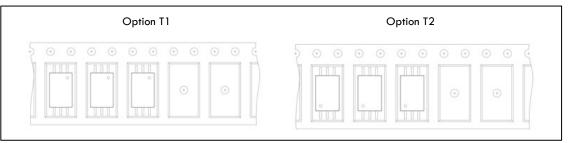
Functional Diagram

Marking



F : Company Abbr.
YY : Year date code
WW : 2-digit work week
314 : Part Number

H : Factory identification mark V : VDE Identification(Option)


Ordering Information

To order, choose a part number from the part number column. Contact sales representative or authorized distributor for information.

Item Name	Lead Form Option	VDE Option	Tape and Reel Option	Packing(MOQ)			
FSS-314P-T1V	9mm Clearance	V					
FSS-314P-T1V	9mm Clearance	٧	0 11				
FSS-314W-T1	11mm Clearance			İ		Option T1	
FSS-314W-T1	Timin Clearance			2004			
FSS-314P-T2V	9mm Clearance	٧		300K			
FSS-314P-T2V	9mm Clearance	٧	0 10				
FSS-314W-T2	11mm Clearance		Option T2				
FSS-314W-T2	i illilli Glearance						

Fig 1

Truth Table

LED	V_{CC} - V_{SS} (Turn-ON, +ve going)	V_{CC} - V_{SS} (Turn-OFF, -ve going)	Vo
Off	0V to 30V	0V to 30V	Low
On	0V to 6.9V	0V to 5.9V	Low
On	6.9V to 8.7V	5.9V to 7.5V	Transition
On	8.7V to 30V	7.5V to 30V	High

Note: A $0.1\mu F$ bypass capacitor must be connected between Pin 4 and 6.

Absolute Maximum Ratings

PARAMETER	SYMBOL	Min	Max	UNIT	Note
Storage Temperature	Tstg	-55	125	°C	-
Operating Temperature	Topr	-40	110	°C	-
Output IC Junction Temperature	TJ	-	125	°C	-
Total Output Supply Voltage	(VCC -VSS)	0	35	V	-
Average Forward Input Current	lF	-	20	mA	-
Reverse Input Voltage	VR	-	5	V	-
"High" Peak Output Current	IOH(PEAK)		0.8	Α	1
"Low" Peak Output Current	IOL(PEAK)		0.8	Α	1
Output Voltage	VO(PEAK)	-0.5	Vcc	V	-
Power Dissipation	PI	-	45	mW	-
Output IC Power Dissipation	PO	-	250	mW	-
Lead Solder Temperature	Tsol	-	260	°C	-

Note: Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Note 1: Exponential waveform. Pulse width \leq 10 μ s, f \leq 15 kHz

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Operating Temperature	T _A	-40	110	°C
Supply Voltage	V_{cc}	10	30	V
Input Current (ON)	I _{F(ON)}	7	16	mA
Input Voltage (OFF)	$V_{\text{F(OFF)}}$	-3.0	0.8	V

Electrical Specifications

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
		INPUT CHA	RACTERISTI	ÇS			
Forward Voltage	V _F	1.6	1.9	2.4	V	I _F = 10 mA	-
Input Forward Voltage Temperature Coefficient	ΔΥΕ/ ΔΤ	-	-1.237	-	mV/°C	IF=10mA	-
Input Reverse Voltage	BVR	5	-	-	V	lr = 10μA	-
Input Threshold Current (Low to High)	IFLH	1	0.6	2	mA	$V_{\odot} > 5V$, $I_{\odot} = 0A$	-
Input Threshold Voltage (High to Low)	VFHL	0.8	1	-	V	VCC = 30 V, VO < 5V	-
Input Capacitance	CIN	-	60	-	pF	VF = 0, $f = 1MHz$	-
		OUTPUT CH	ARACTERIST	ics			
High Level Supply Current	I _{ccн}	-	1.55	3	mA	$I_F=10$ mA, $V_{CC}=30$ V, $V_O=$ Open, $Rg=30\Omega$, $Cg=3$ nF	
Low Level Supply Current	I _{ccı}	-	1.92	3	mA	$I_{F}=0$ mA, $V_{CC}=30$ V, $V_{O}=$ Open, $Rg=30\Omega$, $Cg=3$ nF	
High Level Output Voltage	V _{OH}	29.4	29.69	-	٧	$I_F = 10 \text{ mA}, I_O = -100 \text{ mA}$	2,3
Low Level Output Voltage	V _{OL}	-	0.17	0.4	٧	$I_F = 0 \text{ mA}, I_O = 100 \text{ mA}$	
High Level Output Current	I _{OH}	0.8	ı	-	А	I_F = 10 mA, V_{CC} = 30V V_O = V_{CC} - 4	1
Low Level Output Current	I _{OL}	0.8	-	-	А	$I_F = 0$ mA, $V_{CC} = 30V$ $V_O = V_{SS} + 4$	1
Lindow Voltage Legista There is also	VUVLO+	6.9	7.8	8.7	٧	$V_{\odot} > 5V$, $I_{F} = 10 \text{ mA}$	
Under Voltage Lockout Threshold	VUVLO-	5.9	6.9	7.5	٧	$V_{\rm O} < 5$ V, $I_{\rm F} = 10$ mA	

All Typical values at T_A = 25°C and V_{CC} – V_{SS} = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Note 1: Maximum pulse width = $10 \mu s$.

Note 2: In this test VOH is measured with a dc load current. When driving capacitive loads, VOH will approach VCC as IOH approaches zero amps.

Note 3: Maximum pulse width = 1 ms.

Switching Specifications

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
		SWIT	CHING	CHARA	CTERIST	TICS	
Propagation Delay Time to Output Low Level	t _{PHL}	-	54	110	ns		-
Propagation Delay Time to Output High Level	t _{PLH}	-	69	110		Rg = 47 Ω , Cg = 3 nF,	_
Pulse Width Distortion	PWD	-	22	70	ns	f = 10kHz, Duty Cycle = 50%	-
Propagation Delay Difference Between Any Two Parts	PDD (t _{PHL} - t _{PLH})	-100	-	+100	ns	I _F = 10mA, V _{CC} = 30V	-
Rise Time	t _r	-	35	-	ns		-
Fall Time	t _f	-	25	-	ns		-
Common Mode Transient Immunity at Logic High	СМн	20	40	-	kV/μs	I_F =7 to 16mA V_{CC} = 30V, T_A = 25 °C, V_{CM} = 1kV	1,2
Common Mode Transient Immunity at Logic Low	CML	20	40	-	kV/μs	I_F =0mA V_{CC} = 30V, T_A = 25 °C, V_{CM} = 1kV	1,3

All Typical values at TA = 25°C and VCC – VSS = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

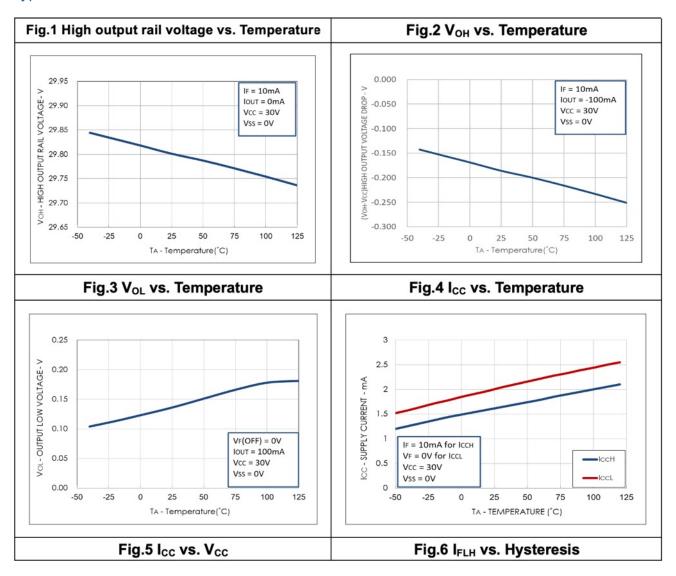
Note 1:Pin 2 needs to be connected to LED common.

Note 2: Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (meaning VO > 10.0V).

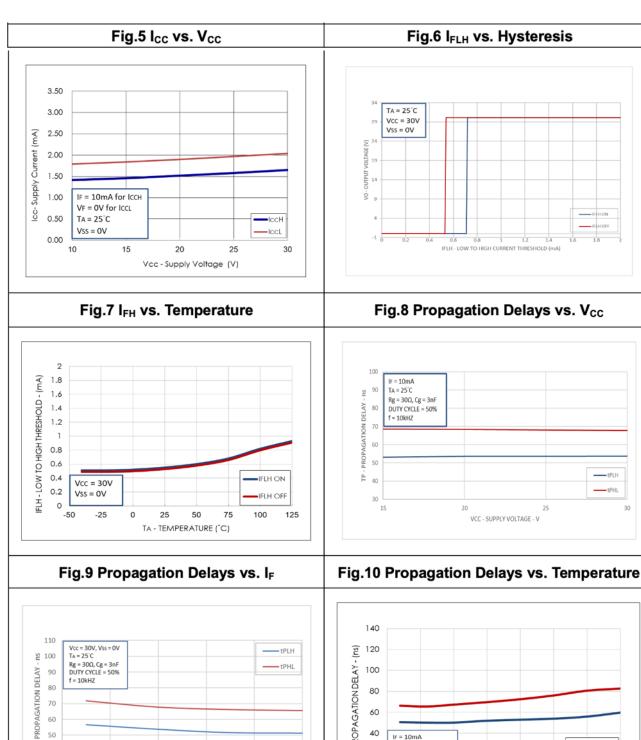
Note 3: Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in

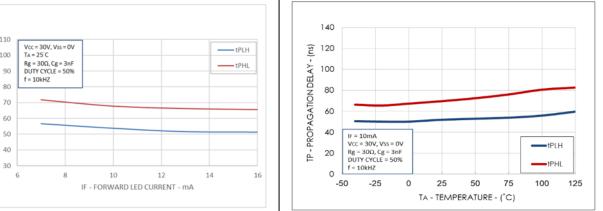
a low state (meaning VO < 1.0V).

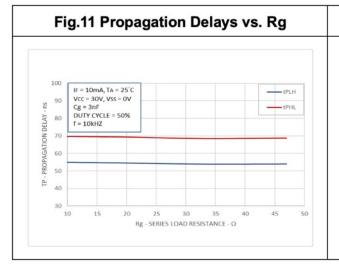
Isolation Characteristic


Parameter	Symbo	Device	Min.	Тур.	Max.	Unit	Test Condition	Note
Withstand Insulation	V _{ISO}	FSS-314P	5000		_	V	RH ≤ 40%-60%,	1,2
Test Voltage	V ISO	FSS-314W	3000	-	_	V	$t = 1 \text{ min, } T_A = 25 ^{\circ}\text{C}$	1,2
Input-Output Resistance	R _{I-O}	-	-	1012		Ω	V _{I-O} = 500V DC	1

All Typical values at TA = 25°C and VCC – VSS = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.


Note 1: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.


Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage 6000VRMS for one second. This test is performed before the 100% production test for partial discharge.


Typical Performance Curves & Test Circuits

Д

100

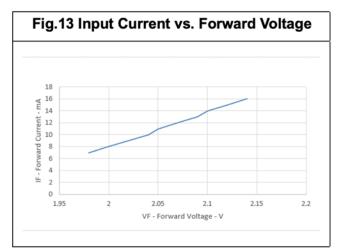
IF = 10mA, TA = 25°C

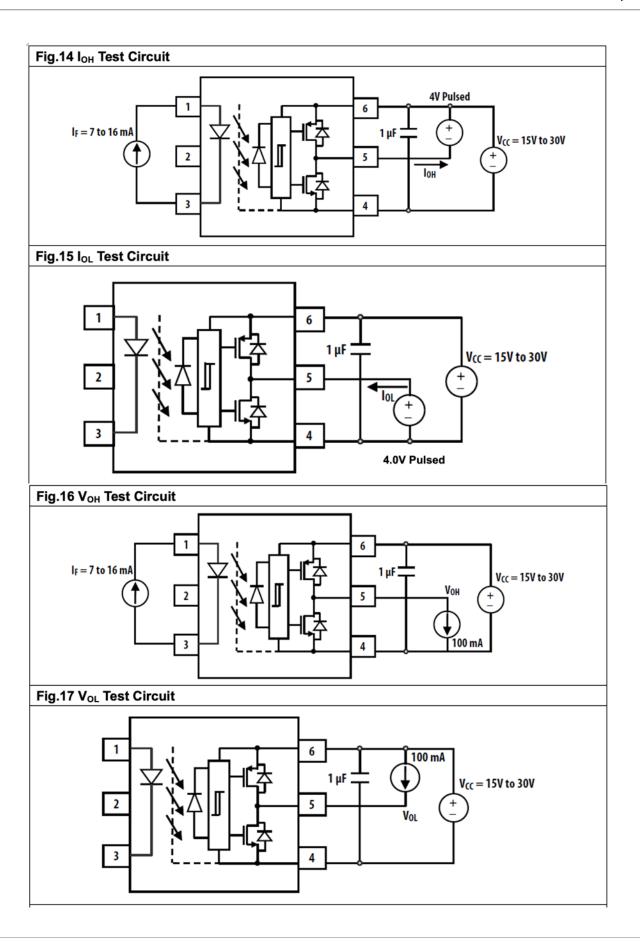
VCC = 30V, VSS = 0V

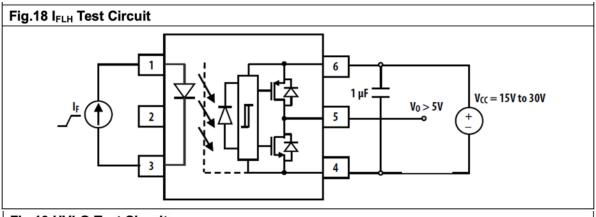
Rg = 300

DUTY CYCLE = 50%

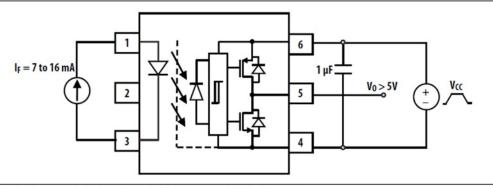
f = 10kHZ

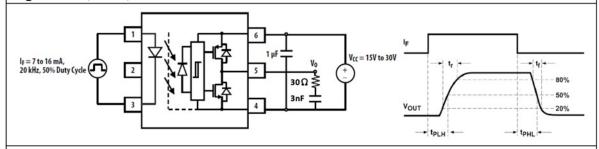

40


30


1 3 5 7 9 11

Cg - SERIES LOAD RESISTANCE - nF


Fig.12 Propagation Delays vs. Cg



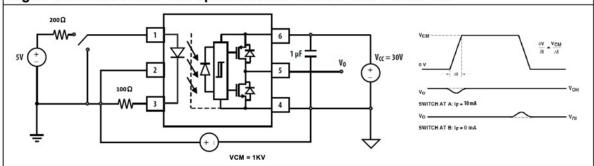
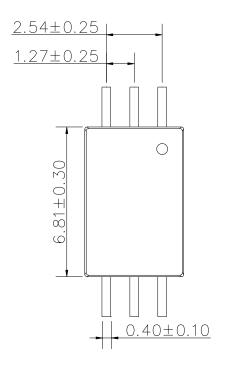
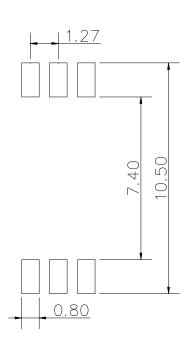
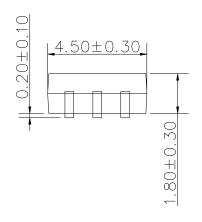
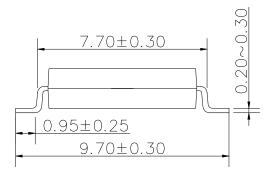

Fig.19 UVLO Test Circuit

Fig.20 tPHL, tPLH, tr and tf Test Circuit and Waveforms

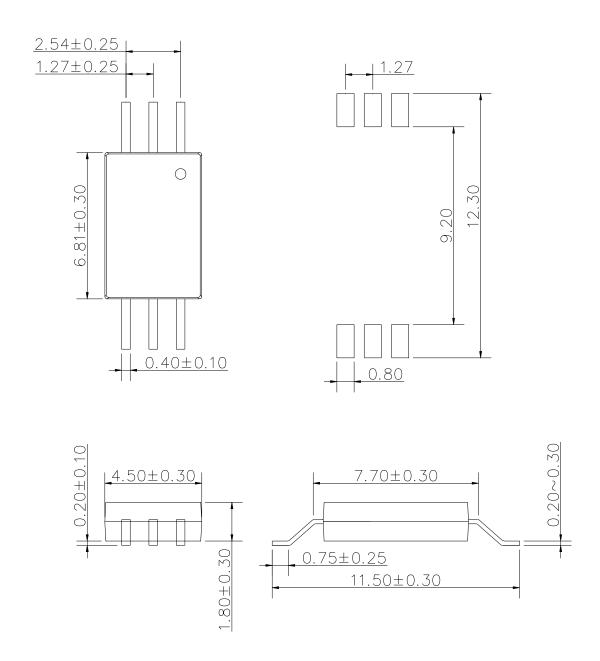



Fig.21 CMR Test Circuit with Split Resistors Network and Waveforms

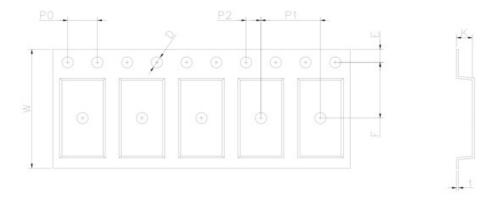



Package Outline Drawings

Surface Mount Lead Forming - P type Dimension



Dimensions in mm unless otherwise stated


Package Outline Drawings

Surface Mount Lead Forming - W type Dimension

Dimensions in mm unless otherwise stated

Taping Dimensions

Dimension Symbol	D	Е	F	P0	P1	P2	t	W	K
P type	1.5±0.1	1.75±0.1	7.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	0.3±0.1	16.0±0.3	2.15±0.1
Dimension (mm)		0_0			0.020	2.020	0.020	.0.020.0	2.102011
W type	1.5±0.1	1.75±0.1	11.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	0.3±0.1	24.0±0.3	2.52±0.1
Dimension (mm)	1.J±0.1	1.7 J±0.1	11.J±0.1	4.010.1	0.0±0.1	Z.U±0.1	0.3±0.1	24.UIU.3	Z.JZIU. I

Dimensions in mm unless otherwise stated

- Foxconn / SOCLE is continually improving the quality, reliability, function and design.
 Foxconn / SOCLE reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- Foxconn / SOCLE makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Foxconn / SOCLE disclaims any and all liability arising out of the application or use of any product, including without limitation special, consequential or incidental damages.
- The products shown in this publication are designed for the general use in electronic
 applications such as office automation, equipment, communications devices,
 audio/visual equipment, electrical application and instrumentation purpose, noninfringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining
 or lifesaving applications or any other application which can result in human injury or
 death.
- Please contact Foxconn / SOCLE sales agent for special application request.
- · Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated in each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Foxconn / SOCLE's terms and conditions of purchase, including but not limited to the warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.

Foxconn Technology Group

SOCLE Technology www.socle-tech.com